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SORTING
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 Sorting takes an unordered collection and makes it an 

ordered one.

1          2          3           4           5            6

5 12 35 42 77 101

512354277 101

1          2          3          4            5            6



SHELL SORT

Shell sort algorithm:

 Insertion sort is an efficient algorithm only if the list is already 

partially sorted and results in an inefficient solution in an average 

case. 

 To overcome this limitation, a computer scientist, D.L. Shell 

proposed an improvement over the insertion sort algorithm. 

 The new algorithm was called shell sort after the name of its 

proposer. 
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IMPLEMENTING SHELL SORT ALGORITHM

Shell sort algorithm:

 Improves insertion sort by comparing the elements separated by a distance 

of several positions to form multiple sublists

 Applies insertion sort on each sublist to move the elements towards their 

correct positions

 Helps an element to take a bigger step towards its correct position, thereby 

reducing the number of comparisons 
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CONTD.

 To understand the implementation of shell sort algorithm, consider an 

unsorted list of numbers stored in an array.
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210 43

70 104030 80arr 20

5 6 7 8 9 10

90 110 75 60 45



 To apply shell sort on this array, you need to:

 Select the distance by which the elements in a group will be separated to 

form multiple sublists. 

 Apply insertion sort on each sublist to move the elements towards their 

correct positions.
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210 43

70 104030 80arr 20

5 6 7 8 9 10

90 110 75 60 45

CONTD



List 1 =

Implementing Shell Sort Algorithm (Contd.)

210 43

arr

5 6 7 8 9 10

Increment = 3                                                   

Pass = 1

630 9

70 609010

741 10

30 4511080List 2 =

852

40 7520List 3 =

70 104030 80 20 90 110 75 60 45
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630 9

70 609010

741 10

30 4511080List 2 =

852

40 7520List 3 =

Apply insertion sort to sort the 

three lists
The lists are sorted 

10 907060 30 1108045

20 7540

List 1 =
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210 43

10 602030 45arr 40

5 6 7 8 9 10

70 80 75 90 110

630 9 741 10

30List 2 =

852

75List 3 =

30

75

10 60 70 90 45 80 110

20 40

List 1 =



Implementing Shell Sort Algorithm (Contd.)

210 43

10 602030 45arr 40

5 6 7 8 9 10

70 80 75 90 110

Increment = 2 

Pass = 2List 1 =

420 6

10 704520

531 7

30 804060List 2 =

75 110

8 10

90

9
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List 1 =

420 6

10 704520

531 7

30 804060List 2 =

75 110

8 10

90

9

Apply insertion sort on each sublist
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List 1 =

420 6

10 704520

531 7

30 806040List 2 =

75 110

8 10

90

9

The lists are now sorted
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List 1 =

420 6

10 704520

531 7

30 806040List 2 =

75 110

8 10

90

9

210 43

10 402030 45arr 60

5 6 7 8 9 10

70 80 75 90 110
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210 43

10 402030 45arr 60

5 6 7 8 9 10

70 80 75 90 110

Increment = 1

Pass = 3

Apply insertion sort to sort the list
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210 43

10 403020 45arr 60

5 6 7 8 9 10

70 75 80 90 110

Increment = 1

Pass = 3

The list is now sorted



 Which of the following sorting algorithms compares the elements 

separated by a distance of several positions to sort the data? The 

options are:

1. Insertion sort

2. Selection sort

3. Bubble sort

4. Shell sort

Just a minute

Answer:

4.  Shell sort



DIVIDE & CONQUER

 Recursive in structure  

Divide the problem into sub-problems that are similar to the 

original but smaller in size

Conquer the sub-problems by solving them recursively.  If they 

are small enough, just solve them in a straightforward manner.

Combine the solutions to create a solution to the original 

problem
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MERGE SORT

Based on divide-and-conquer strategy

 Divide the list into two smaller lists of about equal sizes

 Sort each smaller list recursively

 Merge the two sorted lists to get one sorted list 
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MERGE SORT - EXAMPLE
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674523 14 6 3398 42

674523 14 6 3398 42

4523 1498

2398 45 14

676 33 42

676 33 42

23 98 4514 676 4233

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

divide

merge

divide

divide

merge

merge

divide



Write an algorithm to implement merge sort:

MergeSort(low,high)

1. If (low >= high):

a.  Return

2. Set mid = (low + high)/2

3. Divide the list into two sublists of nearly equal lengths, and sort  each sublist by using 

merge sort. The steps to do this are as  follows: 

a. MergeSort(low, mid

b. MergeSort(mid + 1, high) 

4. Merge the two sorted sublists:

a. Set i = low  

b. Set j = mid + 1

c.  Set k = low

d. Repeat until i > mid or j > high: // This loop will terminate when   

// you reach the end of one of the     

// two sublists.  

Implementing Merge Sort Algorithm (Contd.)



i. If (arr[i] <= arr[j])

Store arr[i] at index k in array B

Increment i by 1

Else 

Store arr[j] at index k in array 

Increment j by 1

ii.  Increment k by 1

e. Repeat until j > high: // If there are still some elements in the        

// second sublist append them to the new list 

i.  Store arr[j] at index k in array B

ii.  Increment j by 1

iii. Increment k by 1 

f.  Repeat until i > mid:  // If there are still some elements in the     

// first sublist append them to the new list

i.  Store arr[i] at index k in array B

ii. Increment I by 1

iii. Increment k by 1  

5. Copy all elements from the sorted array B into the original array arr

Implementing Merge Sort Algorithm (Contd.)



 To sort the list by using merge sort algorithm, you need to 

recursively divide the list into two nearly equal sublists until each 

sublist contains only one element. 

 To divide the list into sublists of size one requires log n passes.

 In each pass, a maximum of n comparisons are performed. 

 Therefore, the total number of comparisons will be a maximum of n 

× log n.

 The efficiency of merge sort is equal to O(n log n)

 There is no distinction between best, average, and worst case 

efficiencies of merge sort because all of them require the same 

amount of time.

Determining the Efficiency of Merge Sort Algorithm



ANALYSIS OF MERGE SORT

 The amount of extra memory used is O(n)

 Let T(N) denote the worst-case running time of merge sort to sort N 
numbers. 

Assume that N is a power of 2.

 Divide step: O(1) time

 Conquer step: 2 T(N/2) time

 Combine step: O(N) time

 Recurrence equation: 

T(1) = 1

T(N) = 2T(N/2) + N
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ANALYSIS: SOLVING RECURRENCE
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QUICK SORT

 Efficient sorting algorithm

 Discovered by C.A.R. Hoare in 1962.

 Example of Divide and Conquer algorithm

 Two phases

 Partition phase

 Divides the work into half

 Sort phase

 Conquers the halves!
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CONTD.
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QUICKSORT EXAMPLE

 Recursive implementation with the left most array entry selected as the pivot element.
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Write an algorithm to implement quick sort:

QuickSort(low,high)

1. If (low > high):

a.  Return

2. Set pivot = arr[low]

3. Set i = low + 1

4. Set j = high

5. Repeat step 6 until i > high or arr[i] > pivot // Search for an             

// 

element greater than  pivot

6. Increment i by 1

7. Repeat step 8 until j < low or arr[j] < pivot // Search for an element  

smaller than pivot

8. Decrement j by 1

9. If i < j: // If greater element is on the left of smaller element

a.  Swap arr[i] with arr[j]

Implementing Quick Sort Algorithm (Contd.)



10. If i <= j:

a.  Go to step 5 // Continue the search

11. If low < j:

a.  Swap arr[low] with arr[ j ] // Swap pivot with last element in                          

// first part of the list

12. QuickSort(low, j – 1) // Apply quicksort on list left to pivot

13. QuickSort(j + 1, high) // Apply quicksort on list right to 

pivot

Implementing Quick Sort Algorithm (Contd.)



 The total time taken by this sorting algorithm depends on 

the position of the pivot value. 

 The worst case occurs when the list is already sorted.

 If the first element is chosen as the pivot, it leads to a worst 

case efficiency of O(n
2
). 

 If you select the median of all values as the pivot, the 

efficiency would be O(n log n).

Determining the Efficiency of Quick Sort Algorithm



QUICK SORT ANALYSIS

Running time

 pivot selection: constant time, i.e. O(1)

 partitioning: linear time, i.e. O(N)

 running time of the two recursive calls 

T(N)=T(i)+T(N-i-1)+cN where c is a constant

 i: number of elements in S1
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QUICK SORT – WORST CASE ANALYSIS 

DATA STRUCTURE AND ALGORITHM 33

 The pivot is the smallest element, all the time

 Partition is always unbalanced



QUICK SORT – BEST & CASE AVERAGE ANALYSIS
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 Partition is perfectly balanced.

 Pivot is always in the middle (median of the array)

 On average, the running time is 

O(N log N)



Which algorithm uses the following procedure to sort a given list 

of elements? 

1. Select an element from the list called a pivot.

2.  Partition the list into two parts such that one part contains

elements lesser than the pivot, and the other part contains 

elements greater than the pivot.

3.  Place the pivot at its correct position between the two lists.

4.  Sort the two parts of the list using the same algorithm.

On which algorithm design technique are quick sort and merge sort based?

Activity



THE HEAP DATA STRUCTURE

 Def:A heap is a complete binary tree with the following two properties:

 Structural property: all levels are full, except possibly the last one, which is 

filled from left to right

 Order (heap) property: for any node x,  Parent(x) ≥ x
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Heap

From the heap property, it follows 

that:

“The root is the maximum 

element of the heap!”

A heap is a binary tree that is filled in order

5

7

8

4

2



ARRAY REPRESENTATION OF HEAPS
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 A heap can be stored as an array A.

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[ i/2 ]

 Heapsize[A] ≤ length[A]

 The elements in the subarray

A[(n/2+1) .. n] are leaves



HEAP TYPES

 Max-heaps (largest element at root), have the max-heap property:

 for all nodes i, excluding the root: 

A[PARENT(i)] ≥ A[i]

 Min-heaps (smallest element at root), have the min-heap property:

 for all nodes i, excluding the root: 

A[PARENT(i)] ≤ A[i]
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MAP HEAP – EXAMPLE 
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26 24 20 18 17 19 13 12 14 11

1          2        3        4         5        6         7        8        9       10

26

24 20

18 17 19 13

12 14 11

Max-heap as an

array.

Max-heap as a binary

tree.

Last row filled from left to right.



ADDING/DELETING NODES

 New nodes are always inserted at the bottom level (left to right)

 Nodes are removed from the bottom level (right to left)
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OPERATIONS ON HEAPS

 Maintain/Restore the max-heap property

 MAX-HEAPIFY

 Create a max-heap from an unordered array

 BUILD-MAX-HEAP

 Sort an array in place

 HEAPSORT
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MAINTAINING THE HEAP PROPERTY
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 Suppose a node is smaller than a child

 Left and Right subtrees of i are max-heaps

 To eliminate the violation:

 Exchange with larger child

 Move down the tree

 Continue until node is not smaller than children



EXAMPLE
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MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] A[4]

A[4] violates the heap property

A[4] A[9]

Heap property restored



MAINTAINING THE HEAP PROPERTY
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 Assumptions:

 Left and Right subtrees

of i are max-heaps

 A[i] may be smaller 

than its children

Alg: MAX-HEAPIFY(A, i, n)

1. l ← LEFT(i)

2. r ← RIGHT(i)

3. if l ≤ n and A[l] > A[i]

4. then largest ←l

5. else largest ←i

6. if r ≤ n and A[r] > A[largest]

7. then largest ←r

8. if largest  i

9. then exchange A[i] ↔A[largest]

10. MAX-HEAPIFY(A, largest, n)



BUILDING A HEAP
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Alg: BUILD-MAX-HEAP(A)

1. n = length[A]

2. for i ← n/2 downto 1

3. do MAX-HEAPIFY(A, i, n)

 Convert an array A[1 … n] into a max-heap (n = length[A])

 The elements in the subarray A[(n/2+1) .. n] are leaves

 Apply MAX-HEAPIFY on elements between 1 and n/2

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:



EXAMPLE
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4 1 3 2 16 9 10 14 8 7

2

14 8

1

16
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3

9 10
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4 5 6 7

8 9 10
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i = 5
i = 4 i = 3

i = 2
i = 1

A



HEAP SORT

 Goal:

 Sort an array using heap representations

 Idea:

 Build a max-heap from the array

 Swap the root (the maximum element) with the last element in the array

 “Discard” this last node by decreasing the heap size

 Call MAX-HEAPIFY on the new root

 Repeat this process until only one node remains 
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EXAMPLE: A=[7, 4, 3, 1, 2]
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MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)



ALG: HEAPSORT(A)
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1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

Heap sort: Analysis

 Running time

 worst case is (N log N)

 Average case is also O(N log N)



SELF-REVIEW QUESTIONS

1. What is a heap? Differentiate between min heap and max heap? 

2. Given a queue of elements with priorities: 21, 13, 17, 10, 7, 11 do 

the following:

a. Build the binary heap (draw the tree at each step) and show 

the corresponding array

b. delete the element with the highest priority, draw the tree at 

each step of the deleting procedure

c. insert the new element with the priority 15 and draw the tree 

at each step of the insertion procedure
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