
DATA STRUCTURE AND ALGORITHM
CHAPTER 8

DATA STRUCTURE AND ALGORITHM 1

Advanced Sorting

and Searching

CONTENTS

 Sorting

 Divide and Conquer

 Advanced Sorting Algorithms

 Shell Sort

 Merge Sort

 Quick Sort

 Heap Sort

DATA STRUCTURE AND ALGORITHM 2

SORTING

DATA STRUCTURE AND ALGORITHM 3

 Sorting takes an unordered collection and makes it an

ordered one.

1 2 3 4 5 6

5 12 35 42 77 101

512354277 101

1 2 3 4 5 6

SHELL SORT

Shell sort algorithm:

 Insertion sort is an efficient algorithm only if the list is already

partially sorted and results in an inefficient solution in an average

case.

 To overcome this limitation, a computer scientist, D.L. Shell

proposed an improvement over the insertion sort algorithm.

 The new algorithm was called shell sort after the name of its

proposer.

DATA STRUCTURE AND ALGORITHM 4

IMPLEMENTING SHELL SORT ALGORITHM

Shell sort algorithm:

 Improves insertion sort by comparing the elements separated by a distance

of several positions to form multiple sublists

 Applies insertion sort on each sublist to move the elements towards their

correct positions

 Helps an element to take a bigger step towards its correct position, thereby

reducing the number of comparisons

DATA STRUCTURE AND ALGORITHM 5

CONTD.

 To understand the implementation of shell sort algorithm, consider an

unsorted list of numbers stored in an array.

DATA STRUCTURE AND ALGORITHM 6

210 43

70 104030 80arr 20

5 6 7 8 9 10

90 110 75 60 45

 To apply shell sort on this array, you need to:

 Select the distance by which the elements in a group will be separated to

form multiple sublists.

 Apply insertion sort on each sublist to move the elements towards their

correct positions.

DATA STRUCTURE AND ALGORITHM 7

210 43

70 104030 80arr 20

5 6 7 8 9 10

90 110 75 60 45

CONTD

List 1 =

Implementing Shell Sort Algorithm (Contd.)

210 43

arr

5 6 7 8 9 10

Increment = 3

Pass = 1

630 9

70 609010

741 10

30 4511080List 2 =

852

40 7520List 3 =

70 104030 80 20 90 110 75 60 45

Implementing Shell Sort Algorithm (Contd.)

630 9

70 609010

741 10

30 4511080List 2 =

852

40 7520List 3 =

Apply insertion sort to sort the

three lists
The lists are sorted

10 907060 30 1108045

20 7540

List 1 =

Implementing Shell Sort Algorithm (Contd.)

210 43

10 602030 45arr 40

5 6 7 8 9 10

70 80 75 90 110

630 9 741 10

30List 2 =

852

75List 3 =

30

75

10 60 70 90 45 80 110

20 40

List 1 =

Implementing Shell Sort Algorithm (Contd.)

210 43

10 602030 45arr 40

5 6 7 8 9 10

70 80 75 90 110

Increment = 2

Pass = 2List 1 =

420 6

10 704520

531 7

30 804060List 2 =

75 110

8 10

90

9

Implementing Shell Sort Algorithm (Contd.)

List 1 =

420 6

10 704520

531 7

30 804060List 2 =

75 110

8 10

90

9

Apply insertion sort on each sublist

Implementing Shell Sort Algorithm (Contd.)

List 1 =

420 6

10 704520

531 7

30 806040List 2 =

75 110

8 10

90

9

The lists are now sorted

Implementing Shell Sort Algorithm (Contd.)

List 1 =

420 6

10 704520

531 7

30 806040List 2 =

75 110

8 10

90

9

210 43

10 402030 45arr 60

5 6 7 8 9 10

70 80 75 90 110

Implementing Shell Sort Algorithm (Contd.)

210 43

10 402030 45arr 60

5 6 7 8 9 10

70 80 75 90 110

Increment = 1

Pass = 3

Apply insertion sort to sort the list

Implementing Shell Sort Algorithm (Contd.)

210 43

10 403020 45arr 60

5 6 7 8 9 10

70 75 80 90 110

Increment = 1

Pass = 3

The list is now sorted

 Which of the following sorting algorithms compares the elements

separated by a distance of several positions to sort the data? The

options are:

1. Insertion sort

2. Selection sort

3. Bubble sort

4. Shell sort

Just a minute

Answer:

4. Shell sort

DIVIDE & CONQUER

 Recursive in structure

Divide the problem into sub-problems that are similar to the

original but smaller in size

Conquer the sub-problems by solving them recursively. If they

are small enough, just solve them in a straightforward manner.

Combine the solutions to create a solution to the original

problem

DATA STRUCTURE AND ALGORITHM 18

MERGE SORT

Based on divide-and-conquer strategy

 Divide the list into two smaller lists of about equal sizes

 Sort each smaller list recursively

 Merge the two sorted lists to get one sorted list

DATA STRUCTURE AND ALGORITHM 19

MERGE SORT - EXAMPLE

DATA STRUCTURE AND ALGORITHM 20

674523 14 6 3398 42

674523 14 6 3398 42

4523 1498

2398 45 14

676 33 42

676 33 42

23 98 4514 676 4233

14 23 45 98 6 33 42 67

6 14 23 33 42 45 67 98

divide

merge

divide

divide

merge

merge

divide

Write an algorithm to implement merge sort:

MergeSort(low,high)

1. If (low >= high):

a. Return

2. Set mid = (low + high)/2

3. Divide the list into two sublists of nearly equal lengths, and sort each sublist by using

merge sort. The steps to do this are as follows:

a. MergeSort(low, mid

b. MergeSort(mid + 1, high)

4. Merge the two sorted sublists:

a. Set i = low

b. Set j = mid + 1

c. Set k = low

d. Repeat until i > mid or j > high: // This loop will terminate when

// you reach the end of one of the

// two sublists.

Implementing Merge Sort Algorithm (Contd.)

i. If (arr[i] <= arr[j])

Store arr[i] at index k in array B

Increment i by 1

Else

Store arr[j] at index k in array

Increment j by 1

ii. Increment k by 1

e. Repeat until j > high: // If there are still some elements in the

// second sublist append them to the new list

i. Store arr[j] at index k in array B

ii. Increment j by 1

iii. Increment k by 1

f. Repeat until i > mid: // If there are still some elements in the

// first sublist append them to the new list

i. Store arr[i] at index k in array B

ii. Increment I by 1

iii. Increment k by 1

5. Copy all elements from the sorted array B into the original array arr

Implementing Merge Sort Algorithm (Contd.)

 To sort the list by using merge sort algorithm, you need to

recursively divide the list into two nearly equal sublists until each

sublist contains only one element.

 To divide the list into sublists of size one requires log n passes.

 In each pass, a maximum of n comparisons are performed.

 Therefore, the total number of comparisons will be a maximum of n

× log n.

 The efficiency of merge sort is equal to O(n log n)

 There is no distinction between best, average, and worst case

efficiencies of merge sort because all of them require the same

amount of time.

Determining the Efficiency of Merge Sort Algorithm

ANALYSIS OF MERGE SORT

 The amount of extra memory used is O(n)

 Let T(N) denote the worst-case running time of merge sort to sort N
numbers.

Assume that N is a power of 2.

 Divide step: O(1) time

 Conquer step: 2 T(N/2) time

 Combine step: O(N) time

 Recurrence equation:

T(1) = 1

T(N) = 2T(N/2) + N

DATA STRUCTURE AND ALGORITHM 24

ANALYSIS: SOLVING RECURRENCE

DATA STRUCTURE AND ALGORITHM 25

kN
N

T

N
N

T

N
NN

T

N
N

T

N
NN

T

N
N

TNT

k

k 











)
2

(2

3)
8

(8

2)
4

)
8

(2(4

2)
4

(4

)
2

)
4

(2(2

)
2

(2)(



Since N=2k, we have k=log2 n

)log(

log

)
2

(2)(

NNO

NNN

kN
N

TNT
k

k







QUICK SORT

 Efficient sorting algorithm

 Discovered by C.A.R. Hoare in 1962.

 Example of Divide and Conquer algorithm

 Two phases

 Partition phase

 Divides the work into half

 Sort phase

 Conquers the halves!

DATA STRUCTURE AND ALGORITHM 26

CONTD.

DATA STRUCTURE AND ALGORITHM

27

QUICKSORT EXAMPLE

 Recursive implementation with the left most array entry selected as the pivot element.

DATA STRUCTURE AND ALGORITHM 28

Write an algorithm to implement quick sort:

QuickSort(low,high)

1. If (low > high):

a. Return

2. Set pivot = arr[low]

3. Set i = low + 1

4. Set j = high

5. Repeat step 6 until i > high or arr[i] > pivot // Search for an

//

element greater than pivot

6. Increment i by 1

7. Repeat step 8 until j < low or arr[j] < pivot // Search for an element

smaller than pivot

8. Decrement j by 1

9. If i < j: // If greater element is on the left of smaller element

a. Swap arr[i] with arr[j]

Implementing Quick Sort Algorithm (Contd.)

10. If i <= j:

a. Go to step 5 // Continue the search

11. If low < j:

a. Swap arr[low] with arr[j] // Swap pivot with last element in

// first part of the list

12. QuickSort(low, j – 1) // Apply quicksort on list left to pivot

13. QuickSort(j + 1, high) // Apply quicksort on list right to

pivot

Implementing Quick Sort Algorithm (Contd.)

 The total time taken by this sorting algorithm depends on

the position of the pivot value.

 The worst case occurs when the list is already sorted.

 If the first element is chosen as the pivot, it leads to a worst

case efficiency of O(n
2
).

 If you select the median of all values as the pivot, the

efficiency would be O(n log n).

Determining the Efficiency of Quick Sort Algorithm

QUICK SORT ANALYSIS

Running time

 pivot selection: constant time, i.e. O(1)

 partitioning: linear time, i.e. O(N)

 running time of the two recursive calls

T(N)=T(i)+T(N-i-1)+cN where c is a constant

 i: number of elements in S1

DATA STRUCTURE AND ALGORITHM 32

QUICK SORT – WORST CASE ANALYSIS

DATA STRUCTURE AND ALGORITHM 33

 The pivot is the smallest element, all the time

 Partition is always unbalanced

QUICK SORT – BEST & CASE AVERAGE ANALYSIS

DATA STRUCTURE AND ALGORITHM 34

 Partition is perfectly balanced.

 Pivot is always in the middle (median of the array)

 On average, the running time is

O(N log N)

Which algorithm uses the following procedure to sort a given list

of elements?

1. Select an element from the list called a pivot.

2. Partition the list into two parts such that one part contains

elements lesser than the pivot, and the other part contains

elements greater than the pivot.

3. Place the pivot at its correct position between the two lists.

4. Sort the two parts of the list using the same algorithm.

On which algorithm design technique are quick sort and merge sort based?

Activity

THE HEAP DATA STRUCTURE

 Def:A heap is a complete binary tree with the following two properties:

 Structural property: all levels are full, except possibly the last one, which is

filled from left to right

 Order (heap) property: for any node x, Parent(x) ≥ x

DATA STRUCTURE AND ALGORITHM 36

Heap

From the heap property, it follows

that:

“The root is the maximum

element of the heap!”

A heap is a binary tree that is filled in order

5

7

8

4

2

ARRAY REPRESENTATION OF HEAPS

DATA STRUCTURE AND ALGORITHM 37

 A heap can be stored as an array A.

 Root of tree is A[1]

 Left child of A[i] = A[2i]

 Right child of A[i] = A[2i + 1]

 Parent of A[i] = A[i/2]

 Heapsize[A] ≤ length[A]

 The elements in the subarray

A[(n/2+1) .. n] are leaves

HEAP TYPES

 Max-heaps (largest element at root), have the max-heap property:

 for all nodes i, excluding the root:

A[PARENT(i)] ≥ A[i]

 Min-heaps (smallest element at root), have the min-heap property:

 for all nodes i, excluding the root:

A[PARENT(i)] ≤ A[i]

DATA STRUCTURE AND ALGORITHM 38

MAP HEAP – EXAMPLE

DATA STRUCTURE AND ALGORITHM

39

26 24 20 18 17 19 13 12 14 11

1 2 3 4 5 6 7 8 9 10

26

24 20

18 17 19 13

12 14 11

Max-heap as an

array.

Max-heap as a binary

tree.

Last row filled from left to right.

ADDING/DELETING NODES

 New nodes are always inserted at the bottom level (left to right)

 Nodes are removed from the bottom level (right to left)

DATA STRUCTURE AND ALGORITHM 40

OPERATIONS ON HEAPS

 Maintain/Restore the max-heap property

 MAX-HEAPIFY

 Create a max-heap from an unordered array

 BUILD-MAX-HEAP

 Sort an array in place

 HEAPSORT

DATA STRUCTURE AND ALGORITHM 41

MAINTAINING THE HEAP PROPERTY

DATA STRUCTURE AND ALGORITHM 42

 Suppose a node is smaller than a child

 Left and Right subtrees of i are max-heaps

 To eliminate the violation:

 Exchange with larger child

 Move down the tree

 Continue until node is not smaller than children

EXAMPLE

DATA STRUCTURE AND ALGORITHM 43

MAX-HEAPIFY(A, 2, 10)

A[2] violates the heap property

A[2] A[4]

A[4] violates the heap property

A[4] A[9]

Heap property restored

MAINTAINING THE HEAP PROPERTY

DATA STRUCTURE AND ALGORITHM 44

 Assumptions:

 Left and Right subtrees

of i are max-heaps

 A[i] may be smaller

than its children

Alg: MAX-HEAPIFY(A, i, n)

1. l ← LEFT(i)

2. r ← RIGHT(i)

3. if l ≤ n and A[l] > A[i]

4. then largest ←l

5. else largest ←i

6. if r ≤ n and A[r] > A[largest]

7. then largest ←r

8. if largest  i

9. then exchange A[i] ↔A[largest]

10. MAX-HEAPIFY(A, largest, n)

BUILDING A HEAP

DATA STRUCTURE AND ALGORITHM 45

Alg: BUILD-MAX-HEAP(A)

1. n = length[A]

2. for i ← n/2 downto 1

3. do MAX-HEAPIFY(A, i, n)

 Convert an array A[1 … n] into a max-heap (n = length[A])

 The elements in the subarray A[(n/2+1) .. n] are leaves

 Apply MAX-HEAPIFY on elements between 1 and n/2

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

4 1 3 2 16 9 10 14 8 7A:

EXAMPLE

DATA STRUCTURE AND ALGORITHM 46

4 1 3 2 16 9 10 14 8 7

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

1

16

7

4

10

9 3

1

2 3

4 5 6 7

8 9 10

2

14 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10 14

2 8

1

16

7

4

3

9 10

1

2 3

4 5 6 7

8 9 10

14

2 8

16

7

1

4

10

9 3

1

2 3

4 5 6 7

8 9 10 8

2 4

14

7

1

16

10

9 3

1

2 3

4 5 6 7

8 9 10

i = 5
i = 4 i = 3

i = 2
i = 1

A

HEAP SORT

 Goal:

 Sort an array using heap representations

 Idea:

 Build a max-heap from the array

 Swap the root (the maximum element) with the last element in the array

 “Discard” this last node by decreasing the heap size

 Call MAX-HEAPIFY on the new root

 Repeat this process until only one node remains

DATA STRUCTURE AND ALGORITHM 47

EXAMPLE: A=[7, 4, 3, 1, 2]

DATA STRUCTURE AND ALGORITHM 48

MAX-HEAPIFY(A, 1, 4) MAX-HEAPIFY(A, 1, 3) MAX-HEAPIFY(A, 1, 2)

MAX-HEAPIFY(A, 1, 1)

ALG: HEAPSORT(A)

DATA STRUCTURE AND ALGORITHM 49

1. BUILD-MAX-HEAP(A)

2. for i ← length[A] downto 2

3. do exchange A[1] ↔A[i]

4. MAX-HEAPIFY(A, 1, i - 1)

Heap sort: Analysis

 Running time

 worst case is (N log N)

 Average case is also O(N log N)

SELF-REVIEW QUESTIONS

1. What is a heap? Differentiate between min heap and max heap?

2. Given a queue of elements with priorities: 21, 13, 17, 10, 7, 11 do

the following:

a. Build the binary heap (draw the tree at each step) and show

the corresponding array

b. delete the element with the highest priority, draw the tree at

each step of the deleting procedure

c. insert the new element with the priority 15 and draw the tree

at each step of the insertion procedure

DATA STRUCTURE AND ALGORITHM 50

